Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(2): 1216-1228, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174231

RESUMO

The potential applications of Ir2P are promising due to its desirable hardness, but its fundamental properties are still not fully understood. In this study, we present a systematic investigation of Ir2P's structural, electronic, superconducting, optical, and thermodynamic properties of Ir2P under pressure. Our calculations show that Ir2P has a Fm3̄m structure at ambient pressure, which matches well with experimental data obtained from high-pressure synchrotron X-ray diffraction. As pressure increases, a transition from the Fm3̄m to the I4/mmm phase occurs at 103.4 GPa. The electronic structure and electron-phonon coupling reveal that the Fm3̄m and I4/mmm phases of Ir2P are superconducting materials with superconducting transition temperatures of 2.51 and 0.89 K at 0 and 200 GPa, respectively. The optical properties of Ir2P indicate that it has optical conductivity in the infrared, visible, and ultraviolet regions. Additionally, we observed that the reflectivity R(ω) of Ir2P is higher than 76% in the 25-35 eV energy range at different pressures, which suggests that it could be used as a reflective coating. We also explored the finite-temperature thermodynamic properties of Ir2P, including the Debye temperature, the first and second pressure derivatives of the isothermal bulk modulus, and the thermal expansion coefficient up to 2000 K using the quasi-harmonic Debye model. Our findings offer valuable insights for engineers to design better devices.

2.
Phys Chem Chem Phys ; 26(3): 2629-2637, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174360

RESUMO

Using first-principles calculations, we predicted three novel superhard semiconducting structures of C8B2N2 with a space group of P3m1. We investigated their mechanical properties and electronic structures up to 100 GPa. These three structures were successfully derived by substituting carbon (C) atoms with isoelectronic boron (B) and nitrogen (N) atoms in the P3m1 phase, which is the most stable structure of BCN and exhibits exceptional mechanical properties. Our results indicated that these structures had superior energy over previously reported t-C8B2N2, achieved by replacing C atoms in the diamond supercell with B and N atoms. To ensure their stable existence, we thoroughly examined their mechanical and dynamical stabilities, and we found that their hardness values reached 82.4, 83.1, and 82.0 GPa, which were considerably higher than that of t-C8B2N2 and even surpassing the hardness of c-BN. Calculations of the electron localization function revealed that the stronger carbon-carbon covalent bonds made them much harder than t-C8B2N2. Additionally, our further calculations of band structures revealed that these materials had indirect bandgaps of 4.164, 4.692, and 3.582 eV. These findings suggest that these materials have the potential to be used as superhard semiconductors, potentially surpassing conventional superhard materials.

3.
Front Plant Sci ; 14: 1240196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711292

RESUMO

The effects of different irrigation and fertilization on potato yield, soil fertility and soil enzyme activity of different varieties under drip irrigation fertilization mode were studied, which could provide support for selecting the best varieties in Northwest China. Three factors and three levels orthogonal experimental design method, a total of nine treatments. The three irrigation levels were W1 (100% crop evapotranspiration (ETC)), W2 (80% ETC) and W3 (60% ETC). The three fertilization levels were F1 (N-P2O5-K2O, 240-120-300 kg ha-1), F2 (180-90-225 kg ha-1) and F3 (120-60-150 kg ha-1). The three varieties were V1 (Feiuritar), V2 (Longshu7) and V3 (Qingshu 9). The results showed that different irrigation and fertilization had significant effects on potato yield, soil fertility and soil enzyme activity in root zone. The highest yield of T5 (80%ETC, 180-90-225 kg ha-1, Qingshu 9) was 49,222.3 kg ha-1. With the increase of fertilizer application rate, potato yield and soil enzyme activity in root zone increased first and then decreased, but soil electrical conductivity (SEC), soil nitrate-N content (SNNC), soil alkali-hydrolyzable nitrogen content (SAHC), soil available potassium (AK), soil available phosphorus (AP), soil ammonium-N content (SANC) and soil organic matter (SOM) in root zone increased continuously. The yield, soil catalase activity, soil urease activity and soil sucrase activity at W2 were 2.81% and 22.2%, 1.84% and 7.04%, 8.26% and 9.62%, 5.34% and 13.36% higher than those at W1 and W3, respectively. The overall trend of soil water content, soil nutrient content and enzyme activity in root zone was 0-20 cm >20-40 cm >40-60 cm soil layer. There were many soil factors affecting tuber yield, among which soil enzyme activity, pH value and root zone conductivity were the key factors. The results showed that T5 (80%ETC, 180-90-225 kg ha-1, Qingshu 9) was the best treatment to improve soil enzyme activity and yield.

4.
J Dairy Sci ; 106(12): 9892-9909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37690731

RESUMO

Ketosis is a metabolic disease that often occurs in dairy cows postpartum and is a result of disordered lipid metabolism. Acetyl-coenzyme A (CoA) acetyltransferase 2 (ACAT2) is important for balancing cholesterol and triglyceride (TG) metabolism; however, its role in subclinical ketotic dairy cows is unclear. This study aimed to explore the potential correlation between ACAT2 and lipid metabolism disorders in subclinical ketotic cows through in vitro and in vivo experiments. In the in vivo experiment, liver tissue and blood samples were collected from healthy cows (CON, n = 6, ß-hydroxybutyric acid [BHBA] concentration <1.0 mM) and subclinical ketotic cows (subclinical ketosis [SCK], n = 6, BHBA concentration = 1.2-3.0 mM) to explore the effect of ACAT2 on lipid metabolism disorders in SCK cows. For the in vitro experiment, bovine hepatocytes (BHEC) were used as the model. The effects of BHBA on ACAT2 and lipid metabolism were investigated via BHBA concentration gradient experiments. Subsequently, the relation between ACAT2 and lipid metabolism disorder was explored by transfection with siRNA of ACAT2. Transcriptomics showed an upregulation of differentially expression genes during lipid metabolism and significantly lower ACAT2 mRNA levels in the SCK group. Compared with the CON group in vivo, the SCK group showed significantly higher expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulator element binding protein 1c (SREBP1c) and significantly lower expression levels of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl-transferase 1A (CPT1A), sterol regulatory element binding transcription factor 2 (SREBP2), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Moreover, the SCK group had a significantly higher liver TG content and significantly lower plasma total cholesterol (TC) and free cholesterol content. These results were indicative of TG and cholesterol metabolism disorders in the liver of dairy cows with SCK. Additionally, the SCK group showed an increased expression of perilipin-2 (PLIN2), decreased expression of apolipoprotein B, and decreased plasma concentration of very low-density lipoproteins (VLDL) and low-density lipoproteins cholesterol (LDL-C) by downregulating ACAT2, which indicated an accumulation of TG in liver. In vitro experiments showed that BHBA induced an increase in the TG content of BHEC, decreased content TC, increased expression of PPARγ and SREBP1c, and decreased expression of PPARα, CPT1A, SREBP2, and HMGCR. Additionally, BHBA increased the expression of PLIN2 in BHEC, decreased the expression and fluorescence intensity of ACAT2, and decreased the VLDL and LDL-C contents. Furthermore, silencing ACAT2 expression increased the TG content; decreased the TC, VLDL, and LDL-C contents; decreased the expression of HMGCR and SREBP2; and increased the expression of SREBP1c; but had no effect on the expression of PLIN2. These results suggest that ACAT2 downregulation in BHEC promotes TG accumulation and inhibits cholesterol synthesis, leading to TG and cholesterol metabolic disorders. In conclusion, ACAT2 downregulation in the SCK group inhibited cholesterol synthesis, increased TG synthesis, and reduced the contents of VLDL and LDL-C, eventually leading to disordered TG and cholesterol metabolism.


Assuntos
Doenças dos Bovinos , Cetose , Transtornos do Metabolismo dos Lipídeos , Feminino , Bovinos , Animais , Metabolismo dos Lipídeos/fisiologia , LDL-Colesterol , PPAR alfa/genética , PPAR gama/metabolismo , Doenças dos Bovinos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Proteínas de Transporte/metabolismo , Lipoproteínas VLDL/metabolismo , Cetose/veterinária , Coenzima A/metabolismo , Ácido 3-Hidroxibutírico
5.
J Dairy Sci ; 106(12): 9644-9662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641289

RESUMO

Long-term feeding of a high-concentrate diet can induce subacute ruminal acidosis (SARA) in ruminants, which further leads to systemic inflammatory response. However, few studies have examined the effects of feeding a high-concentrate diet on the hindgut of ruminants. The purpose of this study was to investigate the effects of a high-concentrate diet on the composition of gut microbiota in colonic contents, inflammatory response, and barrier damage in the colon tissue of ruminants. A total of 12 healthy multiparous lactating Hu sheep were randomly allotted into the following 2 groups: a high-concentrate (HC) group (concentrate:forage = 7:3) and a low-concentrate (LC) group (concentrate:forage = 3:7). All sheep were fitted with ruminal fistulas. The formal feeding experiment lasted for 8 wk. After the feeding experiment, rumen fluid, portal vein blood, hepatic vein blood, colonic contents, and colon tissue samples were collected. The results showed that feeding the HC diet induced SARA in Hu sheep and significantly reduced pH in the colonic contents. The abundances of Firmicutes, Verrucomicrobiota, and Actinobacteriota decreased significantly, whereas those of Bacteroidota, Spirochaetota, and Fibrobacterota significantly increased in colonic contents. At the genus level, the relative abundances of 29 genera were significantly altered depending on the different type of diets. Analysis of the 10 bacterial genera with high relative abundance revealed that feeding the HC diet significantly reduced the abundance of UCG-005, Christensenellaceae R-7 group, UCG-010-norank, Monoglobus, [Eubacterium] coprostanoligenes group_norank, and Alistipes, whereas the abundances of Rikenellaceae RC9 gut group, Treponema, Bacteroides, and Prevotella increased. Compared with the LC group, feeding the HC diet significantly increased the concentration of LPS in rumen fluid, portal vein blood, hepatic vein blood, and colonic contents, and significantly upregulated the mRNA expression levels of proinflammatory cytokines in colon tissue, including TNF-α, IL-1ß, IL-6, and IL-8, indicating the occurrence of inflammatory response in the colon tissue. In addition, the structure of colonic epithelial cells was loose, the intercellular space became larger, epithelial cells were exfoliated, and the mRNA and protein abundances of ZO-1, occludin, claudin-1, claudin-3, and claudin-4 were significantly decreased in the HC group, which was consistent with the results of immunohistochemistry. Furthermore, feeding the HC diet increased the ratios of DNA methylation and chromatin compaction in the promoter regions of occludin and claudin-1, which in turn inhibited their transcriptional expression. Therefore, the present study demonstrated that feeding an HC diet induced SARA in Hu sheep, altered the composition and structure of the microbial community in the colonic contents, induced an inflammatory response, and disrupted the intestinal mucosal barrier in the colonic tissue.


Assuntos
Regulação da Expressão Gênica , Doenças dos Ovinos , Feminino , Animais , Ovinos , Lactação , Claudina-1/metabolismo , Ocludina/análise , Ocludina/metabolismo , Rúmen/metabolismo , Inflamação/veterinária , Inflamação/metabolismo , Dieta/veterinária , Colo/metabolismo , Ruminantes/metabolismo , RNA Mensageiro/metabolismo , Concentração de Íons de Hidrogênio , Ração Animal/análise
6.
Front Microbiol ; 14: 1226877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614595

RESUMO

Feline calicivirus (FCV) causes upper respiratory tract diseases and even death in cats, thereby acting as a great threat to feline animals. Currently, FCV prevention is mainly achieved through vaccination, but the effectiveness of vaccination is limited. In this study, 105 FCV strain VP1 sequences with clear backgrounds were downloaded from the NCBI and subjected to a maximum likelihood method for systematic evolutionary analysis. Based on the genetic analysis results, FCV-positive sera were prepared using SPF mice and Chinese field cats as target animals, followed by a cross-neutralization assay conducted on the different genotype strains and in vivo challenge tests were carried out to further verify with the strain with best cross-protection effect. The results revealed that FCV was mainly divided into two genotypes: GI and GII. The GI genotype strains are prevalent worldwide, but all GII genotype strains were isolated from Asia, indicating a clear geographical feature. This may form resistance to FCV prevention in Asia. The in vitro neutralization assay conducted using murine serum demonstrated that the cross-protection effect varied among strains. A strain with broad-spectrum neutralization properties, DL39, was screened. This strain could produce neutralizing titers (10 × 23.08-10 × 20.25) against all strains used in this study. The antibody titers against the GI strains were 10 × 23.08-10 × 20.5 and those against the GII strains were 10 × 20.75-10 × 20.25. Preliminary evidence suggested that the antibody titer of the DL39 strain against GI was higher than that against GII. Subsequent cross-neutralization assays with cat serum prepared with the DL39 strain and each strain simultaneously yielded results similar to those described above. In vivo challenge tests revealed that the DL39 strain-immunized cats outperformed the positive controls in all measures. The results of several trials demonstrated that strain DL39 can potentially be used as a vaccine strain. The study attempted to combine the genetic diversity and phylogenetic analysis of FCV with the discovery of potential vaccines, which is crucial for developing highly effective FCV vaccines.

7.
J Dairy Sci ; 106(7): 5146-5164, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225589

RESUMO

Mitochondrial homeostasis is closely associated with cellular homeostasis process, whereas mitochondrial dysfunction contributes to apoptosis and mitophagy. Hence, analyzing the mechanism of lipopolysaccharide (LPS)-caused mitochondrial damage is necessary to understand how cellular homeostasis is maintained in bovine hepatocytes. Mitochondria-associated membranes (MAM), a connection between endoplasmic reticulum (ER) and mitochondria, is important to control mitochondrial function. To investigate the underlying mechanisms of the LPS-caused mitochondrial dysfunction, hepatocytes isolated from dairy cows at ∼160 d in milk (DIM) were pretreated with the specific inhibitors of adenosine 5'-monophosphate-activated protein kinase (AMPK), ER stress, RNA-activated protein kinase-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), c-Jun N-terminal kinase, and autophagy followed by a 12 I1/4g/mL LPS treatment. The results showed that inhibiting ER stress with 4-phenylbutyric acid decreased the levels of autophagy and mitochondrial damage with AMPK inactivation in LPS-treated hepatocytes. The AMPK inhibitor compound C pretreatment alleviated LPS-induced ER stress, autophagy and mitochondrial dysfunction by regulating the expression of MAM-related genes, such as mitofusin 2 (MFN2), PERK, and IRE1α. Moreover, inhibiting PERK and IRE1α mitigated autophagy and mitochondrial dynamic disruption by regulating the MAM function. Additionally, blocking c-Jun N-terminal kinase, the downstream sensor of IRE1α, could reduce the levels of autophagy and apoptosis and restore the balance of mitochondrial fusion and fission by modulating the B cell leukemia 2 (BCL-2)/BCL-2 interacting protein 1 (BECLIN1) complex in the LPS-treated bovine hepatocytes. Furthermore, autophagy blockage with chloroquine could intervene in LPS-caused apoptosis to restore mitochondrial function. Collectively, these findings suggest that the AMPK-ER stress axis is involved in the LPS-caused mitochondrial dysfunction by mediating the MAM activity in bovine hepatocytes.


Assuntos
Proteínas Quinases Ativadas por AMP , Lipopolissacarídeos , Feminino , Bovinos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Hepatócitos/metabolismo , Estresse do Retículo Endoplasmático , Apoptose , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
8.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047240

RESUMO

γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP), a bacterial cell wall component, can trigger an inflammatory response. A mammary inflammatory response causes tight junction (TJ) dysfunction. This study aimed to explore the effects and involved mechanisms of iE-DAP-induced inflammatory response on the TJ integrity in bovine mammary epithelial cells (BMECs). The results showed that iE-DAP-induced inflammatory response and TJ disruption was associated with increased expression levels of inflammatory cytokines and decreased gene expression of ZO-1 and Occludin, as well as a reduction in transepithelial electrical resistance and elevation in paracellular dextran passage. While MLCK inhibitor ML-7 reversed the TJ disruption induced by iE-DAP. NF-κB inhibitor BAY 11-7085 hindered the activation of NF-κB and MLCK signaling pathways, the inflammatory response and TJ disruption induced by iE-DAP. NOD1-specific shRNA also inhibited the activation of the NOD1/NF-κB signaling pathway and reversed the inflammatory response and TJ injury in iE-DAP-treated BMECs. Above results suggest that iE-DAP activated the NF-κB and MLCK signaling pathway in NOD1-dependent manner, which promoted the transcription of inflammatory cytokines and altered the expression and distribution of tight junction proteins, finally caused inflammatory response and TJ disruption. This study might provide theoretical basis and scientific support for the prevention and treatment of mastitis.


Assuntos
NF-kappa B , Junções Íntimas , Feminino , Animais , Bovinos , NF-kappa B/metabolismo , Junções Íntimas/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Células Epiteliais/metabolismo
9.
Plants (Basel) ; 12(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678984

RESUMO

Dwarfing rootstocks are capable of high-density planting and are therefore urgently needed in the modern citrus cultivation system. However, little is known about the physiological relevance and molecular basis underlying citrus height. This study aimed to comprehensively analyze phytohormone, carbohydrate, and associated transcriptome changes in the stem of two weak growth rootstocks ('TO' and 'FD') relative to the vigorous 'CC' rootstock. The phenotypic observation revealed that the plant height, plant weight, and internode length were reduced in dwarfing rootstocks. Moreover, the contents of indole-3-acetic acid (IAA), trans-zeatin (tZ), and abscisic acid (ABA), were higher in TO and FD rootstocks, whereas the gibberellin 3 (GA3) content was higher in the CC rootstocks. The carbohydrate contents, including sucrose, fructose, glucose, starch, and lignin significantly decreased in both the TO and FD rootstocks. The full-length transcriptome analysis revealed a potential mechanism regulating dwarfing phenotype that was mainly related to the phytohormone signaling transduction, sugar and starch degradation, lignin synthesis, and cellulose and hemicellulose degradation processes. In addition, many transcription factors (TFs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) events were identified, which might act as important contributors to control the stem elongation and development in the weak growth rootstocks. These findings might deepen the understanding of the complex mechanisms of the stem development responsible for citrus dwarfing and provide a series of candidate genes for the application in breeding new rootstocks with intensive dwarfing.

10.
Sci Rep ; 11(1): 24188, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921217

RESUMO

Echinicola, carotenoid-pigmented bacteria, are isolated from various hypersaline environments. Carotenoid accumulation in response to salt stress can stabilize the cell membrane in order to survive. A pink-colored strain SCS 3-6 was isolated from the deep-sea sediment of the South China Sea. Growth was found to occur at 10-45 °C. The strain could tolerate 10% (w/v) NaCl concentration and grow at pH 5-9. The complete genome of SCS 3-6 comprises 5053 putative genes with a total 5,693,670 bp and an average G + C content of 40.11 mol%. The 16S rRNA gene sequence analysis indicated that strain SCS 3-6 was affiliated with the genus Echinicola, with the closely strains were Echinicola arenosa CAU 1574T (98.29%)and Echinicola shivajiensis AK12T (97.98%). For Echinicola species with available genome sequences, pairwise comparisons for average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) revealed ANIb values from 70.77 to 74.71%, ANIm values from 82.72 to 88.88%, and DDH values from 18.00 to 23.40%. To identify their genomic features, we compared their genomes with those of other Echinicola species. Phylogenetic analysis showed that strain SCS 3-6 formed a monophyletic clade. Genomic analysis revealed that strain SCS 3-6 possessed a complete synthetic pathway of carotenoid and speculated that the production was astaxanthin. Based on phenotypic and genotypic analyses in this study, strain SCS 3-6 is considered to represent a novel species of the genus Echinicola for which the name Echinicola marina sp. nov. is proposed. The type strain is SCS 3-6T (= GDMCC 1.2220T = JCM 34403T).


Assuntos
Carotenoides/metabolismo , Genômica/métodos , Sedimentos Geológicos/química , Família Multigênica/genética , Poliquetos/genética , Animais , Bacteroidetes/genética , DNA Bacteriano/química , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Água do Mar , Análise de Sequência de DNA
11.
Antonie Van Leeuwenhoek ; 114(11): 1791-1804, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34392431

RESUMO

A bacterial lipase producing bacterium, designated SCS 2-3, was isolated from deep-sea sediment of the South China Sea. Phylogenetic analysis based on the 16S rRNA sequence revealed that strain SCS2-3 belonged to the genus Pseudomonas and had 98.56% similarity to P. xinjiangensis NRRL B-51270T as the closest relative strain. MLSA using four protein-coding genes (dnaK, gyrA, recA, and rpoB) showed strain SCS 2-3 to form a separate branch. ANI and in silico DDH values between strain SCS 2-3 and related type strains of Pseudomonas were less than 81.51% and 23.80%, respectively. Genome comparison showed that strain SCS 2-3 shared 1875 core gene families with other eight closely related type strains in Pseudomonas, and the number of strain-unique genes was 263. Through gene annotations, genes related to lipase were found in the genome. Furthermore, a combination of phenotypic, chemotaxonomic, phylogenetic and genotypic data clearly indicated that strain SCS 2-3 represents a novel species of the genus Pseudomonas, for which the name Pseudomonas nanhaiensis sp. nov. is proposed. The type strain is SCS 2-3T (= GDMCC 1.2219T = JCM 34440T).


Assuntos
Lipase , Pseudomonas , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Humanos , Lipase/genética , Hibridização de Ácido Nucleico , Filogenia , Pseudomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Appl Opt ; 59(34): 10746-10753, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361894

RESUMO

In this paper, efficient individual and joint constant amplitude zero auto-correlation (CAZAC) precoding schemes are proposed to improve the performance of an indoor multiple-input multiple-output-orthogonal frequency division multiplexing (MIMO-OFDM)-based visible light communication (VLC) system. By considering the proposed precoding scheme, a 3×3 MIMO-OFDM VLC system with symmetrical and asymmetrical structure is set up, whose peak-to-average-power ratio (PAPR) of transmitted signal, signal-to-noise ratio (SNR), and bit error rate performance are investigated. It is shown that both individual and joint CAZAC precoding schemes can reduce the PAPR of the transmitted signal and make the SNR uniform over data subcarriers, resulting in significant performance improvement compared to the system without precoding. It is demonstrated that there are similar performance improvements for the MIMO-OFDM VLC system using the individual CAZAC precoding and joint CAZAC precoding in a symmetric scenario. At the expense of higher implementation complexity, the joint CAZAC precoding has more performance benefits than the individual CAZAC precoding for the VLC system with asymmetrical MIMO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...